SharkFest '16 Europe

Tackling the Haystack

Tuesday, June 14, 2016

Jasper Bongertz Trace Wrangler | Packet-Foo

#sf16eu

- 1. Haystack?
- 2. Methodology
- 3. Tools
- 4. Demos/Scenarios

What's your Haystack size?

What's your haystack size?

SharkFest '16 Europe • Arnhem, Netherlands • October 17-19, 2016 • #sf16eu

1

What's your haystack size?

What's your haystack size?

This?

Haystack size

- Everybody has a different "haystack size"
 - new analysts may find 20 packets too hard to understand
 - experienced analysts can deal with gigabytes of traffic if they have to
- Capture files
 - dealing with a single file vs. dealing with file sets

Example Sets

- October 2015: ~300GB
 - Trouble with latency of CAD designing in Citrix sessions
- November 2015: ~500GB
 - "see if you can find anything that we can improve/fix"
- February 2016: ~600GB (sliced to 256 bytes)
 - Web application trouble with long proxy chain
- May 2016: ~4000GB
 - Checking for Indicators of Compromise

Working with the haystack

Reducing the haystack size

- Knowledge is a basic building block:
 - protocol behavior, especially IPv4/6 and TCP/UDP
 - application behavior
 - user behavior
 - typical network & security devices, e.g firewalls, packet shapers etc.
- Experience is key
 - spot the important stuff faster
 - know what you can safely ignore & not waste time on
 - Problem: experience is usually gained after you needed it most

Experience vs. Knowledge

No.	IF		Source	Destination	Protocol	Info	Length	Delta Time
E	1 (0	192.168.0.1	10.10.10.10	TCP	59903→8080 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1	66	0.00000000
	2 (0	10.10.10.10	192.168.0.1	TCP	8080→59903 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1	66	0.00027990
	3 (0	192.168.0.1	10.10.10.10	TCP	59903→8080 [FIN, ACK] Seq=1 Ack=1 Win=17408 Len=0 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]	64	0.02947290
	4 (0	192.168.0.1	10.10.10.10	TCP	[TCP Keep-Alive] 59903→8080 [ACK] Seq=1 Ack=1 Win=17408 Len=0 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]	64	0.00008650
	5 (0	10.10.10.10	192.168.0.1	TCP	8080→59903 [ACK] Seq=1 Ack=2 Win=65536 Len=0 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]	64	0.00036190
4	6 (0	10.10.10.10	192.168.0.1	TCP	8080→59903 [FIN, ACK] Seq=1 Ack=2 Win=65536 Len=0 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]	64	0.00012370
L	7 (0	192.168.0.1	10.10.10.10	TCP	59903→8080 [ACK] Seq=2 Ack=2 Win=17408 Len=0 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]	64	0.05521240

http://www.packet-foo.com/traces/HaystackSYNACKFIN.pcapng

- Knowledge allows you to understand the meaning of the TCP packets
- Experience tells you if this conversations is worth mentioning in a analysis report

The path to experience

- When no/little experience is available, you can still reduce the haystack using knowledge
 - read documentation on protocols, applications, etc.
 - gather information about IPs/Users/Ports involved
 - get detailed problem descriptions, with exact date/time info
- Basically you'll need to "learn on the fly"
- Double check your findings whenever you're not sure
 - if possible, ask experienced analysts for a review

General Best Practises

TCP Sessions vs. Chess Games

 How many chess games can you watch/play simultaneously?

Same problem with TCP Sessions

Can you keep track of more than one?

No.	IF	Source	Destination	Protocol	Info	Length	Delta Time
1038	91	10.20.0.71	10.3.0.1	TCP	39787→3128 [ACK] Seq=1 Ack=1 Win=5888 Len=0 TSval=2463769 TSecr=2804173	74	0.000001
1038	92	10.1.0.1	10.2.0.2	TCP	65430+3306 [ACK] Seq=101169 Ack=34883095 Win=21992 Len=0 TSval=11 TSecr=2804051	74	0.000003
1038	93	10.1.0.1	10.2.0.2	TCP	65430+3306 [ACK] Seq=101169 Ack=34885316 Win=19768 Len=0 TSval=11 TSecr=2804051	74	0.000004
1038	94	10.1.0.1	10.2.0.2	TCP	[TCP Window Update] 65430→3306 [ACK] Seq=101169 Ack=34885316 Win=33576 Len=0 TSval=11 TSecr=2804051	74	0.000011
1038	95	10.20.0.71	10.3.0.1	TCP	39788+3128 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM=1 TSval=2463769 TSecr=0 WS=64	82	0.000020
1038	96	10.1.0.1	10.2.0.2	MySQL	Request Query	114	0.000141
1038	97	10.20.0.71	10.3.0.1	HTTP	GET http://webserv2/search_files/images_668.jpeg HTTP/1.1	476	0.000175
1038	98	10.20.0.71	10.3.0.1	TCP	39783→3128 [ACK] Seq=403 ACk=4737 Win=15616 Len=0 TSval=2463769 TSecr=2804173	74	0.000000
1038	99	10.20.0.71	10.3.0.1	TCP	39783→3128 [ACK] Seq=403 Ack=6185 Win=18496 Len=0 TSval=2463769 TSecr=2804173	74	0.000001
1039	99	10.20.0.71	10.3.0.1	HTTP	GET http://webserv2/search_files/images_094.jpeg HTTP/1.1	476	0.000052
1039	01	10.20.0.71	10.3.0.1	TCP	39781→3128 [FIN, ACK] Seq=403 Ack=3050 Win=12736 Len=0 TSval=2463769 TSecr=2804173	74	0.000001
1039	02	10.20.0.71	10.3.0.1	TCP	39789+3128 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM=1 TSval=2463769 TSecr=0 WS=64	82	0.000001
1039	03	10.20.0.71	10.3.0.1	TCP	39783→3128 [ACK] Seq=403 Ack=7633 Win=21440 Len=0 TSval=2463769 TSecr=2804173	74	0.000071
1039	84	10.20.0.71	10.3.0.1	TCP	39783→3128 [ACK] Seq=403 Ack=9081 Win=24320 Len=0 TSval=2463769 TSecr=2804173	74	0.000007
1039	05	10.3.0.1	10.1.0.2	TCP	47391→80 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM=1 TSval=2804174 TSecr=0 WS=64	82	0.000120
1039	96	10.3.0.1	10.1.0.2	TCP	49599→80 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM=1 TSval=2804174 TSecr=0 WS=64	82	0.000036
1039	07	10.20.0.71	10.3.0.1	TCP	39784+3128 [ACK] Seq=403 Ack=4738 Win=15616 Len=0 TSval=2463769 TSecr=2804173	74	0.000088
1039	88	10.1.0.2	10.3.0.1	TCP	80→47391 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM=1 TSval=2805858 TSecr=2804174 WS=64	82	0.000012
1039	89	10.1.0.2	10.3.0.1	TCP	80→49599 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM=1 TSval=2805858 TSecr=2804174 WS=64	82	0.000006
1039	10	10.20.0.71	10.3.0.1	TCP	39783→3128 [FIN, ACK] Seq=403 Ack=9607 Win=27200 Len=0 TSval=2463769 TSecr=2804173	74	0.000003
1039	11	10.20.0.71	10.3.0.1	TCP	39790+3128 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM=1 TSval=2463769 TSecr=0 WS=64	82	0.000047
1039	12	10.3.0.1	10.1.0.2	TCP	47391→80 [ACK] Seq=1 Ack=1 Win=5888 Len=0 TSval=2804174 TSecr=2805858	74	0.000035
1039	13	10.3.0.1	10.1.0.2	TCP	49599→80 [ACK] Seq=1 Ack=1 Win=5888 Len=0 TSval=2804174 TSecr=2805858	74	0.000005
1039	14	10.20.0.71	10.3.0.1	TCP	39784→3128 [ACK] Seq=403 Ack=6186 Win=18496 Len=0 TSval=2463769 TSecr=2804173	74	0.000138
1039	15	10.20.0.71	10.3.0.1	TCP	39784→3128 [ACK] Seq=403 Ack=7634 Win=21440 Len=0 TSval=2463769 TSecr=2804173	74	0.000008
1039	16	10.2.0.2	10.1.0.1	MySQL	Response[Packet size limited during capture]	1522	0.000096
1000	17	10 2 0 2	10 1 0 1	MySOL	PernonselPerket size limited during centurel	1500	0.000010

- What are you supposed to do?
- What information do you have to limit the scope?
 - IP addresses
 - Protocol ports
 - User names
 - Date/Time
 - Markers

Analysis setup

Analysis setup

- Number of analysts
 - if more than one, new challenges appear, e.g. how to share captures
- Number of workstations
 - more is better, helping with carve jobs
- Number of harddrives
 - reading from one, writing to another beats working on a single disk
 - SSDs prefered, but usually smaller than traditional HDDs
- Number of monitors

Typical analysis tasks

- Carve/Extraction Jobs
 - automated packet extraction from large files / set of files
 - often run for hours/days, depending on files/tools
- Filtering
 - manual filtering in Wireshark or other tools
 - only feasable for single files & small numbers of packets
- Merging
 - merge carve/extraction results

A few useful tools (1/2)

- Filtering/carving files
 - Wireshark
 - tshark
 - tcpdump/windump
 - TraceWrangler
- Convert/edit files
 - editcap
 - reordercap
 - TraceWrangler

A few useful tools (2/2)

- Merging files
 - Wireshark
 - mergecap
 - TraceWrangler
- Others
 - pcaptouch
 - ngconvert
 - Network Miner
 - tcpflow

Demo 1 – Carving "Essentials"

- "Essentials" may vary based on the task at hand
 - usually always involves TCP handshake/teardown, so filter for "tcp.flags.syn==1 or tcp.flags.fin==1 or tcp.flags.reset==1"
 - DNS and ICMP are safe bets, too
- Distribute carve tasks across workstations if necessary/possible
 - requires distributing traces and planning carve jobs first

Demo 2 – 5 Tuple VLAN Carve

- Running tshark once per VLAN may take a long time
 - each time tshark has to read all the original files
- Methods to improve performance:
 - disable irrelevant dissectors (double check!)
 - Divide & Conquer
 - e.g. carve VLANs 10,11,12 in one run, 13, 14, 15 in another, then run again on partial files for 10, then 11, then 12, etc.
 - use tcpdump/windump with BPF

Demo 3 – Extracting Frames

- Adding filters for tons of frames in TraceWrangler is going to be slow
 - that's because the code isn't optimized at all
 - it's on the ToDo list \odot
- The output settings define to what file frames will be written

Demo 4: Conversation Statistics

Q&A

Mail: jasper Web: blog.p Twitter: @pac

jasper@packet-foo.com blog.packet-foo.com @packetjay