Forensic Network Analysis in the Time of APTs

October 19th 2016

Christian Landström

#sf16eu
Topics

- Overview on security infrastructure
- Strategies for network defense and forensics
- A look at malicious traffic incl. Demos
- How Wireshark can help
- Best Practice Proactive / Reactive
Tool-Box

Defaults:
Proxy servers with authentication
Logging, Monitoring, (SIEM)

Layers of Defense:
Firewalls / WAFs
Intrusion Detection / Intrusion Prevention
NIDS/NIPS/HIDS/HIPS
Malware Sensors / Sandboxing / “APT-devices”
Standard Procedures:

Typical protection for DMZ systems:
Packet filter → IPS / IDS / APT device / Sandbox → local (host-)firewall
What do companies expect

- Firewall protecting from all sorts of unwanted traffic towards internal systems
- **IDS / IPS** sending Alerts for all sorts of exploitation attempts and abnormal network traffic
- “**APT”** / Sandboxing devices to trigger on malicious code / malicious binary files
- **Host IPS / Host Firewalls** alerting any type of unwanted access, traffic or what not...
Overview on sec. infrastructure

- Depending on
 → area of protection
 → type of attack - leaving out inside jobs (!!!)

Malicious Traffic types:
- External: Internet facing
- Internal: non-Inet facing
Demo #1: DMZ Service

Monitoring the request size in this example reveals some huge request resulting in a new connection initiated by the FTP Server.

```
<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Size</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.163.10</td>
<td>192.168.163.128</td>
<td>TCP</td>
<td>74</td>
<td>41779-21 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TVal=10800595</td>
</tr>
<tr>
<td>192.168.163.10</td>
<td>192.168.163.128</td>
<td>TCP</td>
<td>62</td>
<td>1086-4444 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1</td>
</tr>
<tr>
<td>192.168.163.1</td>
<td>192.168.163.128</td>
<td>TCP</td>
<td>66</td>
<td>56571-21 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1</td>
</tr>
<tr>
<td>192.168.163.1</td>
<td>192.168.163.128</td>
<td>FTP</td>
<td>70</td>
<td>Request: USER anonymous</td>
</tr>
<tr>
<td>192.168.163.1</td>
<td>192.168.163.128</td>
<td>FTP</td>
<td>87</td>
<td>Response: 331 User name ok, need password</td>
</tr>
<tr>
<td>192.168.163.1</td>
<td>192.168.163.128</td>
<td>FTP</td>
<td>75</td>
<td>Request: PASS <a href="mailto:anon@anon.anon">anon@anon.anon</a></td>
</tr>
<tr>
<td>192.168.163.1</td>
<td>192.168.163.128</td>
<td>FTP</td>
<td>74</td>
<td>Response: 230 User logged in</td>
</tr>
<tr>
<td>192.168.163.1</td>
<td>192.168.163.128</td>
<td>FTP</td>
<td>60</td>
<td>Request: SYST</td>
</tr>
<tr>
<td>192.168.163.1</td>
<td>192.168.163.128</td>
<td>FTP</td>
<td>73</td>
<td>Response: 215 UNIX Type: L8</td>
</tr>
<tr>
<td>192.168.163.1</td>
<td>192.168.163.128</td>
<td>FTP</td>
<td>60</td>
<td>Request: FEAT</td>
</tr>
<tr>
<td>192.168.163.1</td>
<td>192.168.163.128</td>
<td>FTP</td>
<td>76</td>
<td>Response: 211- Feature listing</td>
</tr>
<tr>
<td>192.168.163.1</td>
<td>192.168.163.128</td>
<td>FTP</td>
<td>88</td>
<td>Response: MDTM</td>
</tr>
</tbody>
</table>
```
Knowing your applications’ behavior may lead to valid thresholds to reveal anomalies e.g. based on packet length, payload entropy or other factors.
Perimeter defense: Monitoring all protocols

- Know your systems’ configuration
- In-depth understanding of App behavior
- Monitor the events from sec. devices
- Correlate events after sec. alert

→ WebServer accessing other servers after “unsuccessful” exploit?
Demo #2: “Encrypted” sessions

Watch for protocol anomalies e.g. missing HTTP dissector information on HTTP ports containing no valid requests or malformed data
Demo #2: “Encrypted” session

Another example for pretended encrypted traffic not containing a valid SSL handshake

Sample: Using relative Sequence numbers try:
tshark -r <tracefile> -Y "tcp.dstport==443 and tcp.len > 0 and tcp.seq == 1 and !ssl.record"

<table>
<thead>
<tr>
<th>rel.Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Size</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000000</td>
<td>192.168.131.99</td>
<td>192.168.131.129</td>
<td>TCP</td>
<td>62</td>
<td>1178-443 [SYN] Seq=0</td>
</tr>
<tr>
<td>0.0002770</td>
<td>192.168.131.99</td>
<td>192.168.131.129</td>
<td>TCP</td>
<td>62</td>
<td>443-1178 [SYN, ACK] Seq=1</td>
</tr>
<tr>
<td>0.0003200</td>
<td>192.168.131.99</td>
<td>192.168.131.129</td>
<td>TCP</td>
<td>54</td>
<td>1178-443 [ACK] Seq=1</td>
</tr>
<tr>
<td>0.0187730</td>
<td>192.168.131.129</td>
<td>192.168.131.99</td>
<td>SSL</td>
<td>58</td>
<td>Continuation Data</td>
</tr>
<tr>
<td>0.1344550</td>
<td>192.168.131.129</td>
<td>192.168.131.129</td>
<td>TCP</td>
<td>54</td>
<td>1178-443 [ACK] Seq=1</td>
</tr>
</tbody>
</table>
The key question

Are you doing network forensics

a) To check whether there is something bad
b) To analyze something bad that is already known to be there
Incoming traffic critical and monitored

But:

Sessions going out are trusted Mail/Web/FTP etc.

Internal traffic between “trusted devices”
Demo #3: Surfing the web

Also valid protocol requests may hint for an anomaly based on irregular behavior or other indicators.

<table>
<thead>
<tr>
<th>rel.Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Size</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>134.68435192.168.131.99</td>
<td>192.168.131.129</td>
<td>HTTP</td>
<td>293</td>
<td>POST</td>
<td>/bxUZGIZ8QAnWzCW2Eqg8f1SMCjaoIt-1Gr8/ HTTP/1.1</td>
</tr>
<tr>
<td>134.782260192.168.131.99</td>
<td>192.168.131.129</td>
<td>HTTP</td>
<td>293</td>
<td>POST</td>
<td>/bxUZGIZ8QAnWzCW2Eqg8f1SMCjaoIt-1Gr8/ HTTP/1.1</td>
</tr>
<tr>
<td>134.87502192.168.131.99</td>
<td>192.168.131.129</td>
<td>HTTP</td>
<td>293</td>
<td>POST</td>
<td>/bxUZGIZ8QAnWzCW2Eqg8f1SMCjaoIt-1Gr8/ HTTP/1.1</td>
</tr>
<tr>
<td>135.83752192.168.131.99</td>
<td>192.168.131.129</td>
<td>HTTP</td>
<td>293</td>
<td>POST</td>
<td>/bxUZGIZ8QAnWzCW2Eqg8f1SMCjaoIt-1Gr8/ HTTP/1.1</td>
</tr>
</tbody>
</table>
Big issue: Lateral movement and other post-infection activities

- Internal scanning / enumeration
- Access to internal applications
- brute force attempts
- legitimate access with stolen credentials

→ Mostly depending on log files from internal sources
Baselining / Anomaly detection

Knowing your application behavior / network flows is critical to spotting malicious events

- Might be easy for default applications
 → Statistics: Conversation e.g.

- How about special applications?
Demo #4: Baselining sample

- Especially difficult if application payload types unknown or difficult to baseline

```
# tshark -r Trace1.pcap -Y udp -Tfields -e data | more
4b417947534b67534142746157357062474674596d3841524739
e1650518e41793d5abb03d
755d021f5cf975c6342cc14f84caf5e0b863
e1680231b0aee0ecbb648c0a4b14167412cbfb16356e8b6b76db
755f02cf93f622f368d2f6f70bf71c5e5f85a8e297eb79795ac04f
```

Legitimate example Skype

```
# tshark -r Trace2.pcap -Y udp -Tfields -e data | more
10a6b286d9736aae21afc2ddf005f6125f66633de613a63e46
10a6b286d9736aae21afc2ddf005f6125f66633de613a63e46
10a7
10a0b286d9736aae21afc2ddf005f6125f66633de613a63e46
10b15a78
10bf281d1581812c38ee0e0d90c18f2e5458bbc25bc030b0
10a1530e1598ba7ad499afea4ca126827f07de483537d0ad14c0be
```

Malicious example Peacomm.C malware
Baselining approaches e.g. Web

- Many approaches for finding unknown sources of malicious activity
- Sample: domain lists -> diff approach
 - Cat I: Clean or already infected
 - Cat II: newly infected
- Timely Diff’s -> approach new infections / applications
How Wireshark can help

- Better understanding of your application behavior
- Scripted generation of baselining data
- Long-term comparison of network traces for detecting abnormal changes
- Incident Analysis Results can lead to good rules for IDS/IPS and other appliances

!! NO excuse for not having good log files !!
Where’s the catch?

- Depending on the type of intrusion you’re facing, different approaches are needed

- Criticality differs:
 - Standard Malware
 - Advanced Malware
 - Targeted dedicated Malware with strong external c2c and typical behaviour
 - Advanced compromise relying on classic malware
 - Advanced compromise using targeted tooling and completely unique software and leveraging max. legit looks
Demo #5: How Wireshark can help

DNS answers for localhost IP can lead to inactive c2c system

Beware: Also used for lots of valid reasons e.g. SPAM checking

tshark -r 127.0.0.x.pcap -Tfields -e dns.qry.name | grep -v -E "(<valid1>|<valid2>)" | sort | uniq -c | more

[...]

1 xxxxxxx.mcafee.com
1 yyyyyyy.mcafee.com
147 <malicious1>.is-cert.com
146 <malicious3>.ddns-ip.com
148 <malicious4>.ddns-office.com
148 <malicious5>.ddns.com
Demo #5: How Wireshark can help

Alternative: `tshark -r 127.0.0.x.pcap -q -z hosts`

Difference: Multiple answers containing same IP address in `dns.a` NOT listed

```
tshark -r 127.0.0.x.pcap -q -z hosts
[...]
127.0.0.1       {...}.ddns-ip.com
127.0.0.100     {...}.xxxxxx.mailshell.net
127.0.0.255     {...}
127.0.0.128     {...}
```
Recommendation: Malware Traffic Analysis

http://malware-traffic-analysis.net/index.html

Brad Duncan
Recommendation: Network Forensics Workshop

https://www.first.org/_assets/conf2015/networkforensics_virtualbox.zip

PDF: first_2015__hjelmvik__erik__hands-on_network_forensics_20150604
- Difficult at best when serious
- Image from Kaspersky Report about Epic Turla
The “Time” Factor

RUAG Breach: Total data exfiltrated: about 23GB

- C&C servers and infected bots identified in proxy logs.
- Attack goes back to Sept. 2014 were logs end, but we already see C&C traffic.
- Turla/Tavgk Malware have been used.
- Several new C&C Servers found.

- First hints (IP's) from external organisation. No in-depth search possible because proxy does not log internal client IP's.
- Major incident opened by MELANID/GovCERT.ch and RUAG.
- Hot phase of the incident response. Task-force established. Forensic analysis of logs, disks etc.
- Monitoring established.
- Enhanced Monitoring established.
- Several press reports about the incident. This leakage heavily damages the ongoing investigation, rendering the ongoing monitoring useless.

Findings | Events, Tasks

SharkFest ’16 Europe • Arnhem, Netherlands • October 17-19, 2016 • #sf16eu
Bringing it to the limit

Maximizing legitimate traffic types and applications
- e.g. Hammertoss

Check FireEye Report on APT29 -> search engine
Monitoring Networks - Proactive

- Use NetFlow/OpenFlow to monitor meta data
 - Set up alerts for unusual patterns
- Use IDS/IPS with optimized signatures
 - Reduce false positives as much as possible
- Set up Passive DNS / Passive SSL recording servers
 - Helps in tracking down name resolution and certificate history
- **Forensic analysis on full packet captures**
 - Has to be recorded before something happened, of course
 - Carefully selected locations, e.g. Internet outbreaks

- **Use NetFlow/OpenFlow for meta data**
 - Long term storage for forensic searches, e.g. „where did the attacker connect to from the infected system?“

- **Use IDS/IPS as custom IoC alarm system**
 - Write custom IDS rules for known **Indicators of Compromise** from Wireshark Analysis results
Detecting malicious traffic

- Forget „silver bullets“
 → there is no “showmethebadstuff” filter
- Attackers may hide in plain sight (DNS, HTTP(S), FTP,...)
- Filter out positives
 • E.g. Alexa 1 Million
 • Known update sites: OS, AV, Vendors
- Network defense is a 24/7 challenge
- Attackers only need to succeed once, defenders would need 100% success
 - Read as: it’s not „if“ but „when“ an attack will succeed.
 - Expect successful attacks on your network.
- Keep searching
 - It’s a continuous task
 - Don’t just wait for some alarm to go off
Questions?

eMail: landi@packet-foo.com
Web: www.blog.packet-foo.com
Twitter: @0x6C616E6469